10C

Sturgeon Composite High School

Measurement

Conversion Factors

Imperial to Imperial	Metric to Metric	Imperial to Metric	Metric to Imperial
1 ft = 12 in	1 cm = 10 mm	1 in = 2.54 cm	1 cm = 0.3937 in
1 yd = 3 ft	1 cm = 0.01 m	1 ft = 0.3048 m	1 m = 3.2808 ft
1 yd = 36 in	1 m = 1000 mm	1 yd = 0.9144 m	1 m = 1.0936 yds
1 mi = 5280 ft	1 m = 100 cm	1 mi = 1.6093 km	1 km = 0.6214 mi
1 mi = 1760 yds	1 km = 1000 m		

Exponents

Exponent Laws **Properties**

$$x^m \cdot x^n = x^{m+n} \qquad \qquad x^0 = 1$$

$$x^m \div x^n = x^{m-n}$$

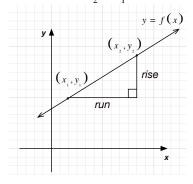
$$x^{-n} = \frac{1}{x^n}$$

$$[x^m] = x^{m \times n}$$

$$x^{\frac{1}{2}} = \sqrt{x}$$

$$[xy]^n = x^n y^n$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$


$$\left[\frac{x}{y}\right]^n = \frac{x^n}{y^n}$$

$$x^{m/n} = \sqrt[n]{x^m}$$

Linear Relations

Slope Formula

$$m = \frac{rise}{run} or \frac{y_2 - y_1}{x_2 - x_1}$$

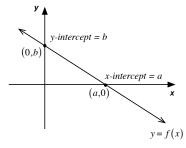
Linear Relation Equations

$$Ax + By + C = 0 Ax + By = C$$

$$Ax + By = C$$

$$(y-y_1) = m(x-x_1)$$

Special Intercept Forms


Slope Y-Intercept

(a.k.a. Slope Intercept)

$$y = mx + b$$

Slope X-Intercept

$$y = m(x - a)$$

Metric Staircase

			divide by 1	. 0				
m	c	d	base	da	h	k		
milli	centi	deci	unit	deca	hecta	kilo		
multiply by 10								

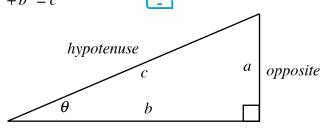
Trigonometry

Trigonometric Ratios

$$\sin(\theta) = \frac{opp}{hyp}$$

$$\theta = Sin^{-1} \left(\frac{opp}{hyp} \right)$$

$$\cos(\theta) = \frac{adj}{hyp}$$


$$\theta = Cos^{-1} \left(\frac{adj}{hyp} \right)$$

$$\tan(\theta) = \frac{opp}{adj}$$

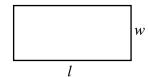
$$\theta = Tan^{-1} \left(\frac{opp}{adj} \right)$$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

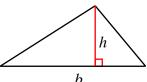
adjacent

2D Shapes


Square

 $Area = l^2$

Perimter = 4l


Rectangle

Area = lw

Perimter = 2l + 2w

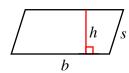
Triangle

 $Area = \frac{1}{2}bh$

Circle

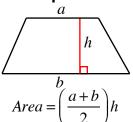
 $Area = \pi r^2$

 $Circumference = 2\pi r$


Rhombus

Area = bh

Perimeter = 4b


Parallelogram

Area = bh

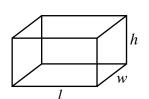
Perimeter = 2b + 2s

Trapezoid

3D Objects

Cube

Rectangular

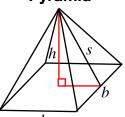


 $Volume = l^3$

 $TSA = 6l^2$

 $LSA = 4l^2$

Prism

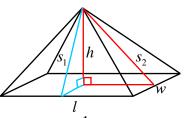


Volume = lwh

TSA = 2lw + 2lh + 2wh

LSA = 2lh + 2wh

Square Pyramid

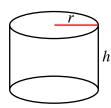


 $Volume = \frac{1}{3}b^2h$

 $TSA = b^2 + 2bs$

LSA = 2bs

Rectangular **Pyramid**

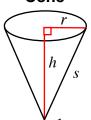


 $Volume = \frac{1}{3}lwh$

 $TSA = lw + ls_1 + ws_2$

 $LSA = ls_1 + ws_2$

Cylinder

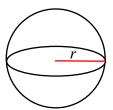


 $Volume = \pi r^2 h$

 $TSA = 2\pi r^2 + 2\pi rh$

 $LSA = 2\pi rh$

Cone



 $Volume = \frac{1}{3}\pi r^2 h$

 $TSA = \pi r^2 + \pi rs$

 $LSA = \pi rs$

Sphere

Volume =

 $TSA = 4\pi r^2$

Virtually Enhanced With

Download Augment app and aim at images

Download HPReveal app,

follow SCHSMath and aim at images kmh2018.08